
Proceedings of theChelyabinsk Scientific Center, No 4(9), 2000

M A T H E M A T I C S

THE ALGORITHM FOR TRACING
OF FLAT EULER CYCLES WITH ORDERED ENCLOSING

T. A. Panioukova (1), A. V. Panyukov (2)

E-mail: kwark@mail.ru (1); panyukov@inf.susu.ac.ru (2)

Southern Ural State University, Chelyabinsk, Russia

Received: November 20, 2000

Flat Euler cycles with ordered enclosing
Let on a plane S be drawn flat Euler graph G ⊂ S ([1], [2]) with set of vertexes V G ⊂ S, set of edges

EG ⊂ S and set of faces FG ⊂ S, and let f0 ⊂ S be external face of this graph. Let Int (H) be interior of
subset H ⊂ G, i.e. join of all connected components of set S \H not containing external face f0. Further let
us designate the number of elements of set M as |M |.

Definition 1 Let us name Euler cycle C = v1e1v2e2 . . . e|EG|v1 with labelled vertex v1 as a cycle with v-ordered
enclosing if for any its initial part Cl = v1e1v2 . . . el, l ≤ (|EG|) it takes place that Int(Cl)

⋂

EG = ∅, i.e. the
intersection of Cl interior with set of edges is empty.

For flat Euler graph on Fig. 1, cycle v1e1v2e2v3e3v1e4v2e5v3e6v1 satisfies the given condition of v-ordered
enclosing and cycle v1e4v2e5v3e6v1e1v2e2v3e3v1 does not satisfy because Int (v1e4v2e5v3e6v1) ⊃ {e1, e2, e3}.'

&

$

%

J
J

J
J

J
J�

�
�

�
�
�
r

rr

v1

v2 v3

e1 e3

e2

e4 e6

e5

�
�
�
�

J
J

J
J�

�
�
�
J

J
J

J

q q pppp
pppp v1(e)

v2(e)e

f1(e)

f2(e)

� ��

-

l1(e)

l2(e)

Fig. 1. Graph for illustration of Euler cycles Fig. 2. The functions on a set of edges of a graph

The used definitions are interpreted in terms of cutting problem as following: S is cutting out sheet, G is
cutting out plan, C is trajectory of cutting tool movement, Int(Cl) is part cut off from a sheet at passage by
cutting tool of a part of trajectory. Condition of v-ordered enclosing means that part cut off from a sheet does
not require additional slitings.

Correctness of the problem of tracing of flat Euler cycle with odered enclosing shows

Theorem 1 Let G be a flat Euler graph, v ∈ V G is vertex adjacent external face of graph G. Then there is
the Euler cycle with v-ordered enclosing.

The proof is by mathematical induction on number of faces of graph G. Euler graphs containing two faces
are the simple cycles. There is nothing to prove for simple cycles. Let any flat Euler graph with number of
faces m : 2 < m < K has a cycle with v-ordered enclosing for any its vertex v ∈ V G adjacent external face.
Without loss of generality we can assume that the degrees of all vertexes of graph G more or equal 4.

The Algorithm for Tracing of Flat Euler Cycles With Ordered Enclosing 19

Let f0 be external face of graph G, and C (f0) = v1e1v2e2 . . . eLv1 represents a cycle from edges of graph
G bounding external face f0. Graph Ĝ = G\EC(f0) resulted by removal of graph G edges bounding face f0
contains not more than |V C(f0)| connected components. Let T be transversal of partition the set V C(f0) on
subsets of Ĝ-connected vertexes. Let G(t) be conponent of connectivity of graph Ĝ containing vertex t ∈ T
adjacent external face.

It is obvious that G(t), t ∈ T are flat Euler cycles containing less then K faces. Hence, each of graphs
G(t), t ∈ T has an Euler cycle with t-ordered enclosing. The cycle for grapf G can be constructed from cycle
C (f0) by replacement of each vertex t ∈ T by an Euler cycle with t-ordered enclosing for graph G(t).

Theorem 1 is proved.
Actually recursive algorthm for tracing of Euler cycle with v-ordered enclosing is described in the proof of

theorem 1. The recurcive algorithm is not rather definite. For example, transversals of a set of subsets can be
selected ambiguously. Besides the complexity of each step essentially depends on a mode of coding graph G.
Using man-machine technologies it is possible to remove this ambiguity. However, it is possible to go on a path
of an improvement the algorithm, simultaniously tending to minimize the complexity of algorithm. Therefore,
attempt is made for giving more formal exposition of algorithm, free from indicated singularities.

Algorithm
Let us set define six functions: v1(e), v2(e) are vertexes incident to edge e ∈ EG; fk(e) is the face which

edge e passes during its rotation counter-clockwise around the vertex vk(e), where k = 1, 2; lk(e) is the edge
belonging the frontier of fecet fk(e) and incident vertex vk(e), k = 1, 2. Introduced functions vk() : EG → V G,
lk() : EG → EG, fk() : EG → FG, k = 1, 2 are shown on fig.2. The constructing of these functions does
not make any problems. Actually they are determined during designing of graph G.

Text of algorithm tracing an Euler cycle with v-ordered enclosing in graph G is shown in fig. 3.

begin
input:

vk() : EG → V G, k = 1, 2,
lk() : EG → EG, k = 1, 2,
fk() : EG → FG, k = 1, 2,
f0 ∈ FG

output:
first ∈ EG, last ∈ EG,
mark() : EG → EG

procedure REPLACE(e ∈ EG)
begin

rv := v2(e); rl := l2(e);
rf := f2(e); v2(e) := v1(e);
l2(e) := l1(e); f2(e) := f1(e);
v1(e) := rv; l1(e) := lv; f1(e) := rf ;
return;

end of REPLACE

Initialization:
(∀v ∈ V G) do S(v) := ∅ od;

(∀e ∈ EG) do
mark(e) = ∞;
if ((f1(e) = f0) ∨ (f2(e) = f0)) e0 := e;
od

if (f2(e0) = f0) REPLACE(e0);
first := last := e0;
v0 := v := v1(e0); ne := l1(e0);
/* k := 1; kmark(e0) := 1; */

Ordering:
while(first 6= ∞) do
while(mark(ne) = ∞) do

M1:/* kmark(ne) := k; */
mark(last) := ne;
if (v2(ne) 6= v)REPLACE(ne);
v := v1(ne); ne := l1(ne);
od

e := first; first := mark(first);
v := v2(e); ne := l2(e);
M2:/* k = kmark(e) + 1; */
mark(e) := S(v); S(v) := e;
od

Forming:
v := v0; e := S(v); first := last := e;
while(last 6= ∅) do

S(v) := mark(e);
v := v1(e); e := S(v);
M3: mark(last) := e; last := e;
od

stop;

end.

Fig.3. Text of the algorithm

20 T. A. Panioukova, A. V. Panyukov

Input data of the algorithm are defined above functions and pointer f0 to exterior face. Output data of the
algorithm are the edge pointers first and last, and array mark. This array is the representation of function
EG → EG, mark(e) is edge from the constructed Euler cycle following e.

The realization of algorithm can be divided into three stages: 1) "Initialization"; 2) "Ordering"; 3) "Form-
ing". Beginning of each stage is marked by the corresponding comment. In a skew field of algorithm the array
mark is redefined for three times: at queueing of M1-marked edges (Fig. 4) by operator M1; at constructing
of stacks of vertexes (Fig. 5) by operator M2; and at defining of the final value (Fig. 6) by operator M3.

��
����

��
��
��

��
��

��
��� � � �� �� �

? ? ? ?

6 6

e1 e2 en−1 en ∞

first last

mark(e1) mark(en−1) mark(en)p ppp
������

��
��
��

��
��

��
��

��
��� ��� � �� �� �

� �� �� �" !
6666

? ? ? ? ?

p
v0

p p
e1 e2 en−1 en ∅

S(v) mark(e1) mark(en−1) mark(en)

v2() v2() v2()
v2()

k+n−1 k+n−2 k+1 k=kmark(en)

Fig. 4. Organization of queue Fig. 5. Organization of stacks
of M1-marked edges of M2-marked edges

n n n n
n n n n� �� �� �

? ? ???

�
�

���

B
B
BBN

�
�

�
��

B
B
BBN

�
�

���

A
A
AAU

�
�

���

p p p pfirst last
mark(e1) mark(en)

e1 e2 en ∅

v2() v2() v2() v2()

v1() v1() v1()

� �6

v1()

v0

Fig. 6. Organization of edge tour with ordered enclosing in the Euler cycle

On stages "Initialization" and "Ordering" algorithm uses procedure REPLACE for redefinition of the func-
tions vk(), lk() and fk() so that the moving along edge e happens from vertex v2(e) to v1(e). Obviously,
this redefinition is exchange of index k to 3 − k for functions vk(), lk(), fk(), k = 1, 2. While describing and
analyzing the algorithm let us use v̄k(), l̄k(), f̄k(), k = 1, 2 for functions constructed by the algorithm despite
the predefined functions vk(), lk(), fk(), k = 1, 2.

At Initialization stage the initial values of all the variables are appropriated: 1) all stacks are declared empty
S(v) = ∅, v ∈ V G; all edges are unmarked mark(e) = ∞; 2) first edge e ∈ EG (any of edges bounding
exterior face f0) is determined; 3) if the function f2(e) coincides with an exterior face procedure REPLACE is
used;

The queue of M1-marked edges is initialized as consisting from initial edge e0, variables first and last that
are used for pointing on first and last elements of queue accordingly point on edge e0. The variable ne is used
for the definition of the next edge, which is included in the list of M1. The variable v0 is used for saving the
vertex adjacent to the exterior face, and variable v is used as current vertex for definition the orientation of
edge ne.

The Ordering stage is fulfilled as follows. First of all all edges belonging to connected component, and
bounding face f0 are included in the list of M1. Procedure REPLACE is used for making the indexing of
vertexes met to an index. After that, edge e which has been included in M1-queue at k loop is excluded from
this queue on k + 1 loop and pushed into the stack of vertex v2(e) (i.e. the status of edge e is becoming
M2-marked). All unmarked edges bounding faces common with ones deleted from M1-queue in this loop are
included into queue of M1-marked edges.

The Algorithm for Tracing of Flat Euler Cycles With Ordered Enclosing 21

The variable k is used for analisys of algorithm productiveness. This variable is used as counter of stages.
Also we determine the function kmark() : EG → N that shows the number of stage when an edge is put into
the queue of M1- marked edges. In the text of algorithm (Fig.3 the operators that determine values of k and
kmark() are in comments / ∗ . . . ∗ /.

Let us introduce

Ek = {e ∈ EG : kmark(e) = k} , Ak = {(v̄1(e), v̄2(e)) : e ∈ E} ,
E∗

k = {e ∈ EG : kmark(e) ≤ k} , A∗k = {(v̄1(e), v̄2(e)) : e ∈ E∗
k} ,

Ek = EG\E∗
k .

Let G(E) be flat graph burn by set of edges E ⊂ EG, and G∗(A) be orgraph burn by set of arcs A.

Lemma 1 Let k ≤ M = max
e∈EG

kmark(e). Then
1) Int(Ek) ⊃ Ek; S\Int(Ek) ⊃ E∗

k ;
2) G(Ek) is the join of cycles not intersected on edges;
3) G∗(Ak) is the oriented graph representing the join of oriented cycles not intersected on arches.

Lemma 2
(

M = max
e∈E

kmark(e)
)

⇒
(

EM = ∅
)

.

It follows from lemma 2 that the algorithm determines the value of kmark() function for each edge
e ∈ EG. It means that each edge e ∈ EG is included into the queue of M1-marked edges. Such an inclusion
is available only once because when we include edge e ∈ EG into the queue we get mark(e) 6= ∞. Each edge
which has got into the queue of M1-marked edges can only be transfered into the state of M2-marked after its
inclusion into stack of v̄2(e) vertex. The order of such an inclusion is determined by a queue of M1-marked
edges. Thus, after ending of "Ordering" stage for each vertex v ∈ V G we have (see Fig. 5.)

S(v) = arg max
e∈E(v)

kmark(e);

(

e′ ∈ E(v), kmark(e′) > min
e∈E(v)

kmark(e)

)

⇒
(

e′′ = mark (e′) ∈ E (v)
kmark (e′′) = kmark (e′)− 1

)

,

where E(v) = {e ∈ EG|v = v̄2(e)} . Besides it comes from lemmas 1 and 2 that

E∗
M = EG, M = max

e∈E(v)
kmark(e).

Therefore oriented graph G∗ = G∗(A∗M) as the oriented image of graph G is connected. As G∗ is the assosiation
of the oriented cycles not intersected on arches G∗ is Euler graph.

According to the description "Forming" stage the algorithm constructs maximal on inclusion chain C =
v1e1v2e2v3 . . . eLvL+1 which satisfies the following conditions:

a) v1 = v0 is vertex adjacent the exterior face that has been found at "Initialization" stage, and

ei = arg max
e∈E(vi)\{el|l<i}

kmark(e), vi+1 = v̄1(ei), i = 1, 2, . . . , L;

b) for any beginning part Cl = v1e1v2e2 . . . , el, l ≤ L and for any vertex v ∈ V C it follows that

min
e∈E(v)∩ECl

kmark(e) > max
e∈E(v)\ECl

kmark(e).

Since the oriented graph G∗ is Euler we obtain C is a cycle. Obviously this cycle contains all the edges
incident to vertex v1, and, hence, all the vertexes belonging the boundary of exterior face.

22 T. A. Panioukova, A. V. Panyukov

Lemma 3 For all l = 1, 2, . . . , L and k = 1, 2, . . . , M the equality Int (Cl)
⋂

Ek = ∅ takes place.

As EG =
⋃M

k=1 Ek then according to lemma 3 we have Int(Cl) ∩ EG = ∅, l = 1, 2, . . . , L. Taking all
the above we can conclude that L = |EG| and the cycle constructed on "Forming" stage is Euler cycle with
ordered enclosing.

It is obvious that computational complexity of "Initialization" and "Forming" stages is O (|EG|). Computa-
tional complexity of "Ordering" stage is also O (|EG|) as we see that each edge is only once put into the queue
of M1-marked edges and then the vertex is removed from it to the vertexes' stacks. Computational complexity
of these operations is O(1). So, computational complexity of the whole algorithm is O (|EG|).

All stated above we generalize as

Theorem 2 If G = (EG, V G) be a flat Euler graph with set of faces FG, functions vk() : EG → V G,
lk() : EG → EG, fk() : EG → FG, k = 1, 2, that are determined on EG, then the algorithm represented
at Fig. 3 finds the Euler cycle with ordered enclosing. After stopping of the algorithm variables first and last
determine the first and last edges of the found cycle, the value of mark(e) function is edge that follows after
the edge e ∈ EG in the found cycle. Computational complexity of algorithm is the value O (|EG|).

Conclusion
So, the problem of tracing of special Euler cycles in flat graph is stated. The cycle restrictions are defined

by the requirements which arises during automatic projection of supervisors for cutting prosess. The existance
of such cycles is proved, algorithm of their tracing is offered, and its correctness is proved.

References
1. Christofides N. Graph theory. An algorithmic approach. � Academic Press Inc. (London)Ltd. 1977.

2. Fleischner H. Eulerian graphs and related topics. Vol. 1-2. � Amsterdam. Noth. Holl. 1991.

