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Introduction 

 Sorbtion of ions by non–linear oxyhydrates able to add the oxhydrate matrix (sorbtion with further 
copolymerization) is, in general case, of quite complex periodic character during long periods. Such  
a periodic curve describes the state of the far–from–equilibrium sorption system (fig. 1). For such sys-
tems it seems reasonable either to experimentally define or theoretically calculate two–dimensional 
sorbtion isotherms in two coordinates: “equilibrium specific sorbtion– equilibrium sorbate concentra-
tion” as well as to introduce one more coordinate, namely “time” (fig. 1). 
 

 
a                b 

Fig. 1. Sections of functions’ surfaces � = f (Cp, t) in the “sorbtion–time” plane immediately after  
the contact of gel with sorbate: 

a — t = 0 hours; b — after the gel standing in sorbate for 24 hours 

 The Liesegang operator and the Hamilton–Jacobi equation The time coordinate describes not 
only the kinetics of sorbtion process but determines the change of some internal recurring states of  
a sorbent solid phase, i.e. its self–organization. Hence, it is the constituent of the sorption isotherm. 
The task is to mathematically describe the change in these sorbate system states using the third time 
coordinate since classical sorbtion isotherms don’t give us such a possibility. In our previous works we 
introduced the so–called process evolution operator, the Liesegang operator [1, 2] to describe the pe-
riodic self–organizing systems. To describe self–organizing processes in gel we will use a simple one–
dimensional model which makes it possible to illustrate the behavior of the Liesegang operator and, 
hence, the change in the sorbate concentration. To describe the above self–organization we will use 
the diffusion equation introducing the Liesegang operator: 
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where �  is the diffusion coefficient, �  is the line length for a given equation, [ ]� �  is the Liesegang 

operator, ��� �  are some current and initial values of concentration of structuring fragments. 

 For the purpose of our work it is necessary to derive an approximate formula for the Liesegang 
operator. It is shown in [2] that the Liesegang operator [ ]� �  is equal to �α , if the concentration of 

sorbate in gel has not reached the upper critical value of concentration 

��� , and it is equal to – �α ,  

if the concentration of sorbate in gel has exceeded the value 

���  and started to decrease but has not 

yet reached the lower critical value 

�� . The analytic formula has not been found yet for a general 

case but it is quite possible to write a program for calculating this operator. 
 A clear idea of the possible Liesegang operator formulas can be inferred from a simple case. Ear-
lier we used the simplified equation of form (1) where the diffusion was neglected: 

�����
�

� =
∂
∂

. 

The value u can be described as ��� �� 
 �= ω , ����� ���� ��� 
 �= ω , where �  is the time, ω  is the 
frequency of given oscillations, 
  is the amplitude (fig. 2). For a more complex case we may write: 
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, 

if the solution of equation takes the form ������������� ���� 
 �= ω . The graphs of the function is pre-
sented in fig. 3. 
 

  

Fig. 2. Function � �� � �=  written by  

the equation ��������� ��� 
 �= ω  

Fig. 3. Function � �� � �=  written by  

the equation ��������� ��� � ���� 
 �= ω  

 Thus, we neglect the diffusion in (1), simplify the Liesegang operator and write it as 
[ ] [ ]���� � �= α , where α is some constant coefficient. The operator [ ]��� �  is determined as follows: 

we have two values of concentration: 

���  and 
�� , with 
� 
��� �< . When �  reaches 


��� , 

[ ] ��� � = − , when �  reaches 
�� , [ ]��� ��− = + . 
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 Equation (1) takes the following form: [ ]�
���

�

�
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�
= α . Now we calculate the absolute values for both 

members. As a result the absolute values of time are α, i. e. the rate of concentration change for the model 
is constant. Hence, since in our case both the upper critical value 


���  and the lower critical value 
��  

(the so–called oscillations return points) remain unchanged, the Liesegang operator takes the form: 
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. 

Then the concentration of self–organized gel (sorbated ion) is: 
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In our model we use the concentration coordinate that describes some ideal periodic vibration law of 
sorbtion variation in non–linear oxyhydrate gel. Energy component of this periodic process is lacking. 
The Liesegang operator only implicitly includes the energy component. It enters into the constants of 
integration. 
 The vibrations of a simple harmonic oscillator may be an actual analogue of periodic sorbtion. The 
oxyhydrate quasi — liquid–crystal gel (due to the particular properties of liquid crystals) [2, 5] can be 
likened to some oscillator, which absorbs and then, by virtue of some physical–chemical reasons, de-
sorbs, which naturally causes the vibration process. From the analysis of bounded [3] Hamiltonian 
systems it follows that the trajectories of the oscillator containing the sorbate have the form of closed 
invariant curves in the phase plane. 
 Thus, motion is periodic and the return to the same point � � � �� �  of space takes place after the cy-
cle with a period of � �π ω  is completed, where ω  is the frequency of motion, ��	  are the generalized 
impulse and the generalized coordinates. The very idea of introducing the “action–angle” variables lies 
in finding such a pair of costate variables, assuming that the costate “coordinate” will increase by 2π 
with each complete cycle of motion. The “action–angle” variables are defined by � � �� θ  where I is the 
constant conjugate momentum. The following expression for the generating function � � � � � �  can be 
written: 
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� �
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The generating function for the model of a simple harmonic oscillator with the Hamiltonian 

( )� � ��

�
� � �= +ω  is expressed by:  
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The equation for the generalized coordinates relationship � � �� � �= θ  can be written as: 

�
��� �

�
� �= ω + δ

ω
. 

 It can be easily demonstrated that in some actual vibration process thevibration period is the dif-
ference of the vibration process returnpoints 


��� – 
��  but in the sorption process theory the proc-
ess evolutionoperator or the Liesegang operator is used. The Hamilton — Jacobiequation [3] is ge-
netically equivalent to the Liesegang operator. 
 Such correlations are made to address not only the Hamilton — Jacobi equation but the condi-
tions of the Liesegang operator separability. In case of separable systems it is solvable and written as: 
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Where �α  are interconnected by the relationship � � ��� � � ′α = α +α + +α = , and a is the value of the 

transformed Hamiltonian � ′  
 In case of the Liesegang operator the similar relationship can be written as: 

[ ] [ ] [ ]� � � � � � � � � ���
�

� � � � � � � � �
�
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∂

 

Periodic Isoterm of State 

 The introduction of the Liesegang operator is justified by the possibility it (the Liesegang operator) 
gives to mathematically describe periodically developing complex processes of sorption with time.  
In this case we don’t need to find the analytical form of the complex sorption Hamiltonians of the  
system. 
 It is possible to make such a description for the mesophaselike systems, when a certain group of 
exchange centers (domains) acts as a liquid crystal one, i.e. works on the principle “all at once” [4, 5]. 
Therefore describing the isoterms of sorption one may deal with some energetically averaged func-
tional domains conferred on the property the experimental of separability. 
 In study of the sorption behavior of gel the isoterm of sorption with time ( � �� � �= ) often has a not–
simple vibration nature (fig. 1), which can’t be limited to the frequency of vibrations of some form. The 
graphs are more complex and even non–periodical. It should be noted that from our point of view 
stated in our previous works [2], there is the only frequency of vibrations, which we modeled by three 
different equations. In the first case it has the form of a sine (or a cosine, or the sum of a sine and  
a cosine depending on the phase). 
 From graphs ��� ��� 
 ��=  ������ �� � ������������� ����� 
 �� � 
 ��= = it follows that the  
experimental data (e.g., fig 2, 3, 4) coincide with neither of them at any frequency and any amplitude. 
The adequate description of the isoterms of sorption in non–linear oxyhydrate gels can be performed 
using the above principle of separability for the oxyhydrate systems. In our case this principle has  
a definite physical meaning. As it has been found out before [6], there is a certain number of pace-
makers in gel, i. e. some discrete particles (fragmentarily quantified) of gel not interacting with each 
other and defining the significant number n of the Liesegang operators. They also give the additive 
effect of sorption. In case of zirconium oxyhydrate gels the number of pacemakers is 3—5 [6]. Large 
diameter pacemakers are little different from the amorphous non– structured phase of gel. 
 

 

Fig. 4. Experimental data of the function � �� � �=  

 In this connection a supposition arises: if autowave vibrations in gel are exclusively determined by the 
forming of the attractors (pacemakers), then there may be the infinite number of attractors. Therefore  
it seems reasonable to find the frequencies and amplitudes of vibrations for these attractors. 
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The concentration of the sorbate in gel can be presented in one of the three ways. It depends on the 
method used to define the attractor vibrations, i. e. we choose the Liesegang operator as follows, 
namely 
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ω= ω ω∫ . 

Note, that in the left equations (3 (1a, 2a, 3a)) the number of attractors is considered to be equal to N, 
in the right equations it is equal to infinity. 
 In case of the finite number of attractors it is necessary to find the parameters of ��  manually.  
In case of the infinite number of attractors (1b) it is necessary to solve the integral equation (3, 1b). 
The spectrum of solutions is determined by: 

�

�
� ���� ��� � � � �

+∞
ω = ω

π ∫ . 

 The spectrum of frequencies, for the experimental data presented in fig. 4, is diagramed in fig.5.  
In case we consider the attractor, vibrating according to the 2nd and 3nd integral laws, it is necessary 
to solve the Fredholm’s integral equation of the first kind, presented by the equations (3, 2b) and (3, 
3b). This problem is incorrect, so the regularization is needed. We used the Fridman’s method of itera-
tive regularization [7]. 
 

 

Fig. 5. The spectrum of frequencies for the data of fig. 4 in case of equation (3, 1b) solution 

 The calculations of the isoterms of sorption of yttrium (2) ions by the zirconium oxyhydrate gels 
under conditions of saturation of gel phase by the yttrium (2) ions were performed on the assumption 
that the maximum number of pacemakers is 5 and the Liesegang operator (3, 1a) is valid. The condi-
tions of saturations were chosen on the assumption that the processes of peptization (destruction) of 
the gel phase under such conditions manifest themselves to the maximum degree, Fig.1. For a gen-
eral case the isoterm of state is written: 

�
�

����� ��� � ��
�

� � �
�

� � 
 �
=

= + ω +ϕ∑ , 

where ��  is some average value of the sorption, mmol/g, �ω  is the frequency of variations, �ϕ  is the 
phase deviation, value 
  may vary between 1 and 5. 
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 It is reasonable to consider the isoterms of sorption state in terms of a non–linear dynamic sorp-
tion system far from equilibrium as some section surfaces in coordinates � �� � �=  ���  � ���� � �=  This 

approach was developed by Poincare and Birkhoff [3]. The isoterm states of the type � ��� � �=  are 

written as: 

�
�

����� ��� � ��
�

� � � �
�

� � 
 �
=

= + ω +ϕ∑ . 

 For the comparison purposes the nature of experimental and calculated isoterms is given in fig. 6. 
We observe the satisfactory agreement between the experimental and calculated isoterms of sorbtion. 

 

  
a b 

Fig. 6. Calculated isoterm of the sorbtion of the yttrium ions 

a — � = 9,7⋅10–3 – 9,5⋅10–4⋅arcsin(sin(2,58⋅Cp + 2,00)) + 9,9⋅10–4⋅arcsin(sin(2,55⋅Cp – 0,07)) +  
+2,7⋅10–3×⋅arcsin(sin(0,77⋅Cp + 0,88)) + 7,3⋅10–4⋅arcsin(sin(1,30⋅Cp + 1,90));  

b — � = u = 5⋅10–5 – 4⋅10–5⋅arcsin(sin(4,10⋅t – 3,80)) + 3⋅10–5⋅arcsin(sin(5,50⋅t – 3,90)) –  
–4⋅10–5×arcsin(sin(6,30⋅t – 6,00)) + 2⋅10–5⋅arcsin(sin(17,5⋅t + 1,90)) – 3⋅10–5⋅arcsin(sin(3,00⋅t + 2,60)) 

Conclusion 

 The analytical equation for the Liesegang operator as well as the genetic relation between the 
empirically introduced Liesegang operator describing the behavior of the non–equilibrium oxyhydrate 
gel and the energy Hamiltonian of the vibrating sorption system are shown. We used the principle of 
separability to analytically describe the sorption state of gel systems by the Poincare—Birkhoff method 
of section surface in coordinates � �� � �=  and � ��� � �= , where u is the value of sorbtion. 

 
 The work is executed under grant The Ministry of Education of the Russian Federation (the pro-
�����������–09.4–643). 
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